Description
You are given the array nums
consisting of n
positive integers. You computed the sum of all non-empty continuous subarrays from the array and then sorted them in non-decreasing order, creating a new array of n * (n + 1) / 2
numbers.
Return the sum of the numbers from index left
to index right
(indexed from 1), inclusive, in the new array. Since the answer can be a huge number return it modulo 109 + 7
.
Example 1:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 5 Output: 13 Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13.
Example 2:
Input: nums = [1,2,3,4], n = 4, left = 3, right = 4 Output: 6 Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.
Example 3:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 10 Output: 50
Constraints:
n == nums.length
1 <= nums.length <= 1000
1 <= nums[i] <= 100
1 <= left <= right <= n * (n + 1) / 2
Solution
C++
class Solution {
public:
int rangeSum(vector<int>& nums, int n, int left, int right) {
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
for (int i = 0; i < n; i++) pq.push({nums[i], i + 1});
int ans = 0, MOD = 1e9 + 7;
for (int i = 1; i <= right; i++) {
auto p = pq.top(); pq.pop();
if (i >= left) ans = (ans + p.first) % MOD;
if (p.second < n) {
p.first += nums[p.second++];
pq.push(p);
}
}
return ans;
}
};
Python3
class Solution:
def rangeSum(self, nums: List[int], N: int, left: int, right: int) -> int:
M = 10 ** 9 + 7
pq = [] # max priority queue
res = 0
for i, x in enumerate(nums):
heappush(pq, (x, i + 1))
for i in range(1, right + 1):
x, j = heappop(pq)
if i >= left:
res += x
res %= M
if j < N:
heappush(pq, (x + nums[j], j + 1))
return res