Description
You are a hiker preparing for an upcoming hike. You are given heights
, a 2D array of size rows x columns
, where heights[row][col]
represents the height of cell (row, col)
. You are situated in the top-left cell, (0, 0)
, and you hope to travel to the bottom-right cell, (rows-1, columns-1)
(i.e., 0-indexed). You can move up, down, left, or right, and you wish to find a route that requires the minimum effort.
A route's effort is the maximum absolute difference in heights between two consecutive cells of the route.
Return the minimum effort required to travel from the top-left cell to the bottom-right cell.
Example 1:
Input: heights = [[1,2,2],[3,8,2],[5,3,5]] Output: 2 Explanation: The route of [1,3,5,3,5] has a maximum absolute difference of 2 in consecutive cells. This is better than the route of [1,2,2,2,5], where the maximum absolute difference is 3.
Example 2:
Input: heights = [[1,2,3],[3,8,4],[5,3,5]] Output: 1 Explanation: The route of [1,2,3,4,5] has a maximum absolute difference of 1 in consecutive cells, which is better than route [1,3,5,3,5].
Example 3:

Input: heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]] Output: 0 Explanation: This route does not require any effort.
Constraints:
rows == heights.length
columns == heights[i].length
1 <= rows, columns <= 100
1 <= heights[i][j] <= 106
Solution
Python3
class Solution:
def minimumEffortPath(self, heights: List[List[int]]) -> int:
rows, cols = len(heights), len(heights[0])
dist = [[inf] * cols for _ in range(rows)]
dist[0][0] = 0
pq = [(0, 0, 0)]
while pq:
d, x, y = heappop(pq)
if dist[x][y] != d: continue
if x == rows - 1 and y == cols - 1: return d
for dx, dy in [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)]:
if 0 <= dx < rows and 0 <= dy < cols:
oldDist = dist[dx][dy]
newDist = max(d, abs(heights[dx][dy] - heights[x][y]))
if newDist < oldDist:
dist[dx][dy] = newDist
heappush(pq, (newDist, dx, dy))
return -1