Description
You are given an array of integers nums of length n and a positive integer k.
The power of an array is defined as:
- Its maximum element if all of its elements are consecutive and sorted in ascending order.
- -1 otherwise.
You need to find the power of all subarrays of nums of size k.
Return an integer array results of size n - k + 1, where results[i] is the power of nums[i..(i + k - 1)].
Β
Example 1:
Input: nums = [1,2,3,4,3,2,5], k = 3
Output: [3,4,-1,-1,-1]
Explanation:
There are 5 subarrays of nums of size 3:
- [1, 2, 3]with the maximum element 3.
- [2, 3, 4]with the maximum element 4.
- [3, 4, 3]whose elements are not consecutive.
- [4, 3, 2]whose elements are not sorted.
- [3, 2, 5]whose elements are not consecutive.
Example 2:
Input: nums = [2,2,2,2,2], k = 4
Output: [-1,-1]
Example 3:
Input: nums = [3,2,3,2,3,2], k = 2
Output: [-1,3,-1,3,-1]
Β
Constraints:
- 1 <= n == nums.length <= 500
- 1 <= nums[i] <= 105
- 1 <= k <= n
Solution
Python3
class Solution:
    def resultsArray(self, nums: List[int], k: int) -> List[int]:
        N = len(nums)
        if N == 1: return [nums[0]]
 
        if k == 1: return nums
 
        curr = 1
        res = []
 
        for i in range(1, N):
            if nums[i] == nums[i - 1] + 1:
                curr += 1
            else:
                curr = 1
            
            if i + 1 >= k:
                if curr >= k:
                    res.append(nums[i])
                else:
                    res.append(-1)
        
        return res