Description
You are given two positive 0-indexed integer arrays nums1 and nums2, both of length n.
The sum of squared difference of arrays nums1 and nums2 is defined as the sum of (nums1[i] - nums2[i])2 for each 0 <= i < n.
You are also given two positive integers k1 and k2. You can modify any of the elements of nums1 by +1 or -1 at most k1 times. Similarly, you can modify any of the elements of nums2 by +1 or -1 at most k2 times.
Return the minimum sum of squared difference after modifying array nums1 at most k1 times and modifying array nums2 at most k2 times.
Note: You are allowed to modify the array elements to become negative integers.
Β
Example 1:
Input: nums1 = [1,2,3,4], nums2 = [2,10,20,19], k1 = 0, k2 = 0 Output: 579 Explanation: The elements in nums1 and nums2 cannot be modified because k1 = 0 and k2 = 0. The sum of square difference will be: (1 - 2)2 + (2 - 10)2 + (3 - 20)2 + (4 - 19)2Β = 579.
Example 2:
Input: nums1 = [1,4,10,12], nums2 = [5,8,6,9], k1 = 1, k2 = 1 Output: 43 Explanation: One way to obtain the minimum sum of square difference is: - Increase nums1[0] once. - Increase nums2[2] once. The minimum of the sum of square difference will be: (2 - 5)2 + (4 - 8)2 + (10 - 7)2 + (12 - 9)2Β = 43. Note that, there are other ways to obtain the minimum of the sum of square difference, but there is no way to obtain a sum smaller than 43.
Β
Constraints:
n == nums1.length == nums2.length1 <= n <= 1050 <= nums1[i], nums2[i] <= 1050 <= k1, k2 <= 109
Solution
Python3
class Solution:
def minSumSquareDiff(self, nums1: List[int], nums2: List[int], k1: int, k2: int) -> int:
n = len(nums1)
diff = [0] * n
for index, (a, b) in enumerate(zip(nums1, nums2)):
diff[index] = abs(a - b)
mmax = max(diff)
buckets = [0] * (mmax + 1)
for d in diff:
buckets[d] += 1
k = k1 + k2
for x in range(mmax, 0, -1):
cnt = buckets[x]
take = min(k, cnt)
buckets[x] -= take
buckets[x - 1] += take
k -= take
total = 0
for x, count in enumerate(buckets):
total += x * x * count
return total