Description
You are given an integer array prices
where prices[i]
is the price of a stock in dollars on the ith
day, and an integer k
.
You are allowed to make at most k
transactions, where each transaction can be either of the following:
-
Normal transaction: Buy on day
i
, then sell on a later dayj
wherei < j
. You profitprices[j] - prices[i]
. -
Short selling transaction: Sell on day
i
, then buy back on a later dayj
wherei < j
. You profitprices[i] - prices[j]
.
Note that you must complete each transaction before starting another. Additionally, you can't buy or sell on the same day you are selling or buying back as part of a previous transaction.
Return the maximum total profit you can earn by making at most k
transactions.
Β
Example 1:
Input: prices = [1,7,9,8,2], k = 2
Output: 14
Explanation:
We can make $14 of profit through 2 transactions:- A normal transaction: buy the stock on day 0 for $1 then sell it on day 2 for $9.
- A short selling transaction: sell the stock on day 3 for $8 then buy back on day 4 for $2.
Example 2:
Input: prices = [12,16,19,19,8,1,19,13,9], k = 3
Output: 36
Explanation:
We can make $36 of profit through 3 transactions:- A normal transaction: buy the stock on day 0 for $12 then sell it on day 2 for $19.
- A short selling transaction: sell the stock on day 3 for $19 then buy back on day 4 for $8.
- A normal transaction: buy the stock on day 5 for $1 then sell it on day 6 for $19.
Β
Constraints:
2 <= prices.length <= 103
1 <= prices[i] <= 109
1 <= k <= prices.length / 2
Solution
C++
class Solution {
public:
long long memo[1001][501][3];
long long maximumProfit(vector<int>& prices, int k) {
int N = prices.size();
memset(memo, -1, sizeof(memo));
return dp(0, k, 0, prices, N);
}
long long dp(int index, int k, int status, vector<int>& prices, int N) {
if (index == N - 1) {
if (status == 0) return 0;
if (status == 1) return prices[index];
return -prices[index];
}
if (k == 0) return 0;
if (memo[index][k][status] != -1) return memo[index][k][status];
// skip
long long res = dp(index + 1, k, status, prices, N);
if (status == 0) {
// status == 1, long
res = max(res, -prices[index] + dp(index + 1, k, 1, prices, N));
// status == 2, short
res = max(res, prices[index] + dp(index + 1, k, 2, prices, N));
} else if (status == 1) {
// sell now
res = max(res, prices[index] + dp(index + 1, k - 1, 0, prices, N));
} else {
// buy back now
res = max(res, -prices[index] + dp(index + 1, k - 1, 0, prices, N));
}
return memo[index][k][status] = res;
}
};
Python3
class Solution:
def maximumProfit(self, prices: List[int], k: int) -> int:
N = len(prices)
@cache
def dp(index, currK, status):
if index == N - 1:
if status == 0: return 0
if status == 1: return prices[index]
return -prices[index]
if index >= N or currK == 0: return 0
# skip
res = dp(index + 1, currK, status)
if status == 0:
# status == 1, long
res = max(res, -prices[index] + dp(index + 1, currK, 1))
# status == 2, short
res = max(res, prices[index] + dp(index + 1, currK, 2))
elif status == 1:
# sell now
res = max(res, prices[index] + dp(index + 1, currK - 1, 0))
else:
# buy back now
res = max(res, -prices[index] + dp(index + 1, currK - 1, 0))
return res
ans = dp(0, k, 0)
dp.cache_clear()
return ans