Description
Given an integer array nums
, return an array answer
such that answer[i]
is equal to the product of all the elements of nums
except nums[i]
.
The product of any prefix or suffix of nums
is guaranteed to fit in a 32-bit integer.
You must write an algorithm that runs in O(n)
time and without using the division operation.
Example 1:
Input: nums = [1,2,3,4] Output: [24,12,8,6]
Example 2:
Input: nums = [-1,1,0,-3,3] Output: [0,0,9,0,0]
Constraints:
2 <= nums.length <= 105
-30 <= nums[i] <= 30
- The product of any prefix or suffix of
nums
is guaranteed to fit in a 32-bit integer.
Follow up: Can you solve the problem in O(1)
extra space complexity? (The output array does not count as extra space for space complexity analysis.)
Solution
Python3
class Solution:
def productExceptSelf(self, nums: List[int]) -> List[int]:
N = len(nums)
res = [1] * N
curr = 1
for i in range(N):
res[i] *= curr
curr *= nums[i]
curr = 1
for i in range(N - 1, -1, -1):
res[i] *= curr
curr *= nums[i]
return res
C++
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int N = nums.size();
vector<int> res(N, 1);
int curr = 1;
// construct prefix
for (int i = 0; i < N; i++) {
res[i] *= curr;
curr *= nums[i];
}
curr = 1;
// construct suffix
for (int i = N - 1; i >= 0; i--) {
res[i] *= curr;
curr *= nums[i];
}
return res;
}
};