Description
You are given an integer array nums
and a non-negative integer k
. A sequence of integers seq
is called good if there are at most k
indices i
in the range [0, seq.length - 2]
such that seq[i] != seq[i + 1]
.
Return the maximum possible length of a good subsequence of nums
.
Example 1:
Input: nums = [1,2,1,1,3], k = 2
Output: 4
Explanation:
The maximum length subsequence is [1,2,1,1,3]
.
Example 2:
Input: nums = [1,2,3,4,5,1], k = 0
Output: 2
Explanation:
The maximum length subsequence is [1,2,3,4,5,1]
.
Constraints:
1 <= nums.length <= 500
1 <= nums[i] <= 109
0 <= k <= min(nums.length, 25)
Solution
Python3
class Solution:
def maximumLength(self, nums: List[int], k: int) -> int:
N = len(nums)
# dp[i][j] -> the length of the longest subseq from index i till N with j indices
dp = [[0] * (k + 1) for _ in range(N)]
max_dp = [0] * (k + 1)
prev = {}
res = 0
for i in range(N - 1, -1, -1):
p = prev[nums[i]] if nums[i] in prev else i
for j in range(k, -1, -1):
dp[i][j] = max(1 + (dp[p][j] if i != p else 0), 1 + (max_dp[j - 1] if j > 0 else 0))
max_dp[j] = max(max_dp[j], dp[i][j])
prev[nums[i]] = i
res = max(res, dp[i][k])
return res
C++
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
class Solution {
public:
int N;
int cache[505][505][26];
int dp(int index, int prev, int count, vector<int>& nums, int k) {
if (index == N) return 0;
// Check the cache
if (cache[index][prev + 1][count] != -1) {
return cache[index][prev + 1][count];
}
int res = INT_MIN;
// Case 1: skip the current element
res = dp(index + 1, prev, count, nums, k);
// Case 2: take the current element
if (prev != -1) {
if (nums[index] != nums[prev]) {
if (count + 1 <= k) {
res = max(res, 1 + dp(index + 1, index, count + 1, nums, k));
}
} else {
res = max(res, 1 + dp(index + 1, index, count, nums, k));
}
} else {
res = max(res, 1 + dp(index + 1, index, count, nums, k));
}
// Store the result in the cache and return
cache[index][prev + 1][count] = res;
return res;
}
int maximumLength(vector<int>& nums, int k) {
N = nums.size();
memset(cache, -1, sizeof(cache));
return dp(0, -1, 0, nums, k);
}
};