Description
You are given a 0-indexed integer array nums
and an integer value
.
In one operation, you can add or subtract value
from any element of nums
.
- For example, if
nums = [1,2,3]
andvalue = 2
, you can choose to subtractvalue
fromnums[0]
to makenums = [-1,2,3]
.
The MEX (minimum excluded) of an array is the smallest missing non-negative integer in it.
- For example, the MEX of
[-1,2,3]
is0
while the MEX of[1,0,3]
is2
.
Return the maximum MEX of nums
after applying the mentioned operation any number of times.
Example 1:
Input: nums = [1,-10,7,13,6,8], value = 5 Output: 4 Explanation: One can achieve this result by applying the following operations: - Add value to nums[1] twice to make nums = [1,0,7,13,6,8] - Subtract value from nums[2] once to make nums = [1,0,2,13,6,8] - Subtract value from nums[3] twice to make nums = [1,0,2,3,6,8] The MEX of nums is 4. It can be shown that 4 is the maximum MEX we can achieve.
Example 2:
Input: nums = [1,-10,7,13,6,8], value = 7 Output: 2 Explanation: One can achieve this result by applying the following operation: - subtract value from nums[2] once to make nums = [1,-10,0,13,6,8] The MEX of nums is 2. It can be shown that 2 is the maximum MEX we can achieve.
Constraints:
1 <= nums.length, value <= 105
-109 <= nums[i] <= 109
Solution
Python3
class Solution:
def findSmallestInteger(self, nums: List[int], value: int) -> int:
N = len(nums)
mod = [0] * value
for x in nums:
mod[x % value] += 1
m = min(mod)
for x in range(m * value, (m + 1) * value):
index = x % value
if mod[index] - m <= 0:
return x
return -1