Description
Given an unsorted integer array nums
. Return the smallest positive integer that is not present in nums
.
You must implement an algorithm that runs in O(n)
time and uses O(1)
auxiliary space.
Example 1:
Input: nums = [1,2,0] Output: 3 Explanation: The numbers in the range [1,2] are all in the array.
Example 2:
Input: nums = [3,4,-1,1] Output: 2 Explanation: 1 is in the array but 2 is missing.
Example 3:
Input: nums = [7,8,9,11,12] Output: 1 Explanation: The smallest positive integer 1 is missing.
Constraints:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
Solution
Python3
class Solution:
def firstMissingPositive(self, nums: List[int]) -> int:
N = len(nums)
for i in range(N):
if nums[i] <= 0 or nums[i] > N:
nums[i] = N + 1
for i in range(N):
a = abs(nums[i])
if a > N: continue
a -= 1
if nums[a] > 0:
nums[a] = -nums[a]
for i in range(N):
if nums[i] >= 0:
return i + 1
return N + 1
C++
class Solution{
public:
int firstMissingPositive(vector<int>& A)
{
int n = A.size();
for(int i = 0; i < n; ++ i)
while(A[i] > 0 && A[i] <= n && A[A[i] - 1] != A[i])
swap(A[i], A[A[i] - 1]);
for(int i = 0; i < n; ++ i)
if(A[i] != i + 1)
return i + 1;
return n + 1;
}
};