Description
You are given a string num
, representing a large integer, and an integer k
.
We call some integer wonderful if it is a permutation of the digits in num
and is greater in value than num
. There can be many wonderful integers. However, we only care about the smallest-valued ones.
- For example, when
num = "5489355142"
:<ul> <li>The 1<sup>st</sup> smallest wonderful integer is <code>"5489355214"</code>.</li> <li>The 2<sup>nd</sup> smallest wonderful integer is <code>"5489355241"</code>.</li> <li>The 3<sup>rd</sup> smallest wonderful integer is <code>"5489355412"</code>.</li> <li>The 4<sup>th</sup> smallest wonderful integer is <code>"5489355421"</code>.</li> </ul> </li>
Return the minimum number of adjacent digit swaps that needs to be applied to num
to reach the kth
smallest wonderful integer.
The tests are generated in such a way that kth
Β smallest wonderful integer exists.
Β
Example 1:
Input: num = "5489355142", k = 4 Output: 2 Explanation: The 4th smallest wonderful number is "5489355421". To get this number: - Swap index 7 with index 8: "5489355142" -> "5489355412" - Swap index 8 with index 9: "5489355412" -> "5489355421"
Example 2:
Input: num = "11112", k = 4 Output: 4 Explanation: The 4th smallest wonderful number is "21111". To get this number: - Swap index 3 with index 4: "11112" -> "11121" - Swap index 2 with index 3: "11121" -> "11211" - Swap index 1 with index 2: "11211" -> "12111" - Swap index 0 with index 1: "12111" -> "21111"
Example 3:
Input: num = "00123", k = 1 Output: 1 Explanation: The 1st smallest wonderful number is "00132". To get this number: - Swap index 3 with index 4: "00123" -> "00132"
Β
Constraints:
2 <= num.length <= 1000
1 <= k <= 1000
num
only consists of digits.
Solution
Python3
class Solution:
def getMinSwaps(self, nums: str, k: int) -> int:
n = len(nums)
def nextPermutation(nums):
i = n - 1
while i > 0 and nums[i-1] >= nums[i]:
i -= 1
j = i
while j < n and nums[i-1] < nums[j]:
j += 1
nums[i-1], nums[j-1] = nums[j-1], nums[i-1]
nums[i:] = nums[i:][::-1]
return nums
swapped = list(nums)
for _ in range(k):
swapped = nextPermutation(swapped)
res = 0
for i in range(n):
j = i
while j < n and swapped[j] != nums[i]: j += 1
while i < j:
swapped[j], swapped[j - 1] = swapped[j - 1], swapped[j]
res += 1
j -= 1
return res