Description
You are given a string target, an array of strings words, and an integer array costs, both arrays of the same length.
Imagine an empty string s.
You can perform the following operation any number of times (including zero):
- Choose an index
iin the range[0, words.length - 1]. - Append
words[i]tos. - The cost of operation is
costs[i].
Return the minimum cost to make s equal to target. If it's not possible, return -1.
Example 1:
Input: target = "abcdef", words = ["abdef","abc","d","def","ef"], costs = [100,1,1,10,5]
Output: 7
Explanation:
The minimum cost can be achieved by performing the following operations:
- Select index 1 and append
"abc"tosat a cost of 1, resulting ins = "abc". - Select index 2 and append
"d"tosat a cost of 1, resulting ins = "abcd". - Select index 4 and append
"ef"tosat a cost of 5, resulting ins = "abcdef".
Example 2:
Input: target = "aaaa", words = ["z","zz","zzz"], costs = [1,10,100]
Output: -1
Explanation:
It is impossible to make s equal to target, so we return -1.
Constraints:
1 <= target.length <= 5 * 1041 <= words.length == costs.length <= 5 * 1041 <= words[i].length <= target.length- The total sum of
words[i].lengthis less than or equal to5 * 104. targetandwords[i]consist only of lowercase English letters.1 <= costs[i] <= 104
Solution
C++
struct TrieNode {
TrieNode *sfx = nullptr;
TrieNode *dict = nullptr;
std::array<TrieNode*, 26> child{};
int word_id = -1;
};
static TrieNode preallocated_nodes[(int)5e4 + 5];
static TrieNode *preallocated_queue[(int)5e4 + 5];
static int dp[(int)1e5 + 5];
class Solution {
public:
int minimumCost(string &target, vector<string>& words, vector<int>& costs) {
auto trie = Trie(words, costs);
int n = target.size();
dp[0] = 0;
for (int i = 1; i <= n; ++i) {
dp[i] = 1e9;
for (int j : trie.suffixesAfterAppending(target[i - 1])) {
dp[i] = std::min(dp[i], dp[i - words[j].size()] + costs[j]);
}
}
return dp[n] == 1e9 ? -1 : dp[n];
}
struct Trie {
int count = 0;
TrieNode *newTrieNode() {
preallocated_nodes[count] = TrieNode();
return &preallocated_nodes[count++];
}
TrieNode *root = nullptr, *curr = nullptr;
Trie(vector<string>& words, vector<int> &costs) {
root = newTrieNode();
root->sfx = root->dict = root;
for (int i = 0; i < words.size(); ++i) {
auto &&word = words[i];
TrieNode *u = root;
for (auto c : word) {
if (!u->child[c - 'a']) {
u->child[c - 'a'] = newTrieNode();
}
u = u->child[c - 'a'];
}
if (u->word_id < 0 || costs[i] < costs[u->word_id]) {
u->word_id = i;
}
}
Queue q;
q.push(root);
while (!q.empty()) {
TrieNode *u = q.pop();
for (int i = 0; i < 26; ++i) {
auto v = u->child[i];
if (!v) {
continue;
}
TrieNode *p = u->sfx;
while (p != root && !p->child[i]) {
p = p->sfx;
}
if (u != root && p->child[i]) {
v->sfx = p->child[i];
} else {
v->sfx = root;
}
v->dict = v->sfx->word_id >= 0 ? v->sfx : v->sfx->dict;
q.push(v);
}
}
curr = root;
}
Trie &suffixesAfterAppending(char letter) {
while (curr != root && !curr->child[letter - 'a']) {
curr = curr->sfx;
}
if (curr->child[letter - 'a']) {
curr = curr->child[letter - 'a'];
start = curr->word_id >= 0 ? curr : curr->dict;
} else {
start = root;
}
return *this;
}
// Iterate all suffixes for current prefix, longest to shortest
TrieNode *start = root;
struct Iterator {
TrieNode *u = nullptr;
Iterator &operator++() { u = u->dict; return *this; }
bool operator==(Iterator &o) { return u == o.u; }
int operator*() { return u->word_id; }
};
Iterator begin() { return Iterator{start}; }
Iterator end() { return Iterator{root}; }
// Optimization literally just for fun
struct Queue {
int start = 0, end = 0;
inline void push(TrieNode *u) { preallocated_queue[end++] = u; }
inline TrieNode *pop() { return preallocated_queue[start++]; }
bool empty() { return start == end; }
};
};
};Python3
class Solution:
def minimumCost(self, target: str, words: List[str], costs: List[int]) -> int:
d = [{} for _ in range(max(len(x) for x in words) + 1)]
for w, c in zip(words, costs):
if w not in d[len(w)]: d[len(w)][w] = c
elif c < d[len(w)][w]: d[len(w)][w] = c
lengths = [i for i in range(len(d)) if len(d[i])]
n = len(target)
dp = [10 ** 9] * (n + 1)
dp[0] = 0
for i in range(n):
for j in lengths:
if i + j > n: break
else:
try:
cost = d[j][target[i:i+j]]
if dp[i+j] > dp[i] + cost:
dp[i+j] = dp[i] + cost
except:
pass
return dp[n] if dp[n] < 10 ** 9 else -1