Description
You are given a 0-indexed integer array nums. A subarray of nums is called continuous if:
- Let i,i + 1, ...,jbe the indices in the subarray. Then, for each pair of indicesi <= i1, i2 <= j,0 <= |nums[i1] - nums[i2]| <= 2.
Return the total number of continuous subarrays.
A subarray is a contiguous non-empty sequence of elements within an array.
Β
Example 1:
Input: nums = [5,4,2,4] Output: 8 Explanation: Continuous subarray of size 1: [5], [4], [2], [4]. Continuous subarray of size 2: [5,4], [4,2], [2,4]. Continuous subarray of size 3: [4,2,4]. There are no subarrys of size 4. Total continuous subarrays = 4 + 3 + 1 = 8. It can be shown that there are no more continuous subarrays.
Β
Example 2:
Input: nums = [1,2,3] Output: 6 Explanation: Continuous subarray of size 1: [1], [2], [3]. Continuous subarray of size 2: [1,2], [2,3]. Continuous subarray of size 3: [1,2,3]. Total continuous subarrays = 3 + 2 + 1 = 6.
Β
Constraints:
- 1 <= nums.length <= 105
- 1 <= nums[i] <= 109
Solution
Python3
from sortedcontainers import SortedList
 
class Solution:
    def continuousSubarrays(self, nums: List[int]) -> int:
        N = len(nums)
        res = 0
        i = 0
        sl = SortedList()
        
        
        for j, x in enumerate(nums):
            sl.add(x)
            
            while len(sl) >= 2 and sl[-1] - sl[0] > 2:
                sl.remove(nums[i])
                i += 1
            
            res += j - i + 1
        
        return res