Problem Link

Description


You are given an integer n denoting the number of cities in a country. The cities are numbered from 0 to n - 1.

You are also given a 2D integer array roads where roads[i] = [ai, bi] denotes that there exists a bidirectional road connecting cities ai and bi.

You need to assign each city with an integer value from 1 to n, where each value can only be used once. The importance of a road is then defined as the sum of the values of the two cities it connects.

Return the maximum total importance of all roads possible after assigning the values optimally.

Β 

Example 1:

Input: n = 5, roads = [[0,1],[1,2],[2,3],[0,2],[1,3],[2,4]]
Output: 43
Explanation: The figure above shows the country and the assigned values of [2,4,5,3,1].
- The road (0,1) has an importance of 2 + 4 = 6.
- The road (1,2) has an importance of 4 + 5 = 9.
- The road (2,3) has an importance of 5 + 3 = 8.
- The road (0,2) has an importance of 2 + 5 = 7.
- The road (1,3) has an importance of 4 + 3 = 7.
- The road (2,4) has an importance of 5 + 1 = 6.
The total importance of all roads is 6 + 9 + 8 + 7 + 7 + 6 = 43.
It can be shown that we cannot obtain a greater total importance than 43.

Example 2:

Input: n = 5, roads = [[0,3],[2,4],[1,3]]
Output: 20
Explanation: The figure above shows the country and the assigned values of [4,3,2,5,1].
- The road (0,3) has an importance of 4 + 5 = 9.
- The road (2,4) has an importance of 2 + 1 = 3.
- The road (1,3) has an importance of 3 + 5 = 8.
The total importance of all roads is 9 + 3 + 8 = 20.
It can be shown that we cannot obtain a greater total importance than 20.

Β 

Constraints:

  • 2 <= n <= 5 * 104
  • 1 <= roads.length <= 5 * 104
  • roads[i].length == 2
  • 0 <= ai, bi <= n - 1
  • ai != bi
  • There are no duplicate roads.

Solution


Python3

class Solution:
    def maximumImportance(self, n: int, roads: List[List[int]]) -> int:
        degree = [0] * n
        V = [None] * n
 
        for x, y in roads:
            degree[x] += 1
            degree[y] += 1
        
        s = sorted(range(n), key = lambda i : degree[i])
        for i, node in enumerate(s):
            V[node] = i + 1
        
        res = 0
        for x, y in roads:
            res += V[x]
            res += V[y]
 
        return res