Description
You are given an integer array nums
.
A special triplet is defined as a triplet of indices (i, j, k)
such that:
0 <= i < j < k < n
, wheren = nums.length
nums[i] == nums[j] * 2
nums[k] == nums[j] * 2
Return the total number of special triplets in the array.
Since the answer may be large, return it modulo 109 + 7
.
Β
Example 1:
Input: nums = [6,3,6]
Output: 1
Explanation:
The only special triplet is (i, j, k) = (0, 1, 2)
, where:
nums[0] = 6
,nums[1] = 3
,nums[2] = 6
nums[0] = nums[1] * 2 = 3 * 2 = 6
nums[2] = nums[1] * 2 = 3 * 2 = 6
Example 2:
Input: nums = [0,1,0,0]
Output: 1
Explanation:
The only special triplet is (i, j, k) = (0, 2, 3)
, where:
nums[0] = 0
,nums[2] = 0
,nums[3] = 0
nums[0] = nums[2] * 2 = 0 * 2 = 0
nums[3] = nums[2] * 2 = 0 * 2 = 0
Example 3:
Input: nums = [8,4,2,8,4]
Output: 2
Explanation:
There are exactly two special triplets:
(i, j, k) = (0, 1, 3)
<ul> <li><code>nums[0] = 8</code>, <code>nums[1] = 4</code>, <code>nums[3] = 8</code></li> <li><code>nums[0] = nums[1] * 2 = 4 * 2 = 8</code></li> <li><code>nums[3] = nums[1] * 2 = 4 * 2 = 8</code></li> </ul> </li> <li><code>(i, j, k) = (1, 2, 4)</code> <ul> <li><code>nums[1] = 4</code>, <code>nums[2] = 2</code>, <code>nums[4] = 4</code></li> <li><code>nums[1] = nums[2] * 2 = 2 * 2 = 4</code></li> <li><code>nums[4] = nums[2] * 2 = 2 * 2 = 4</code></li> </ul> </li>
Β
Constraints:
3 <= n == nums.length <= 105
0 <= nums[i] <= 105
Solution
Python3
class Solution:
def specialTriplets(self, nums: List[int]) -> int:
N = len(nums)
MOD = 10 ** 9 + 7
res = 0
left = Counter()
right = Counter(nums)
for x in nums:
right[x] -= 1
t = x * 2
res += (left[t] * right[t])
res %= MOD
left[x] += 1
return res