Description
You are given an integer n
. There is an undirected graph with n
nodes, numbered from 0
to n - 1
. You are given a 2D integer array edges
where edges[i] = [ai, bi]
denotes that there exists an undirected edge connecting nodes ai
and bi
.
Return the number of pairs of different nodes that are unreachable from each other.
Example 1:

Input: n = 3, edges = [[0,1],[0,2],[1,2]] Output: 0 Explanation: There are no pairs of nodes that are unreachable from each other. Therefore, we return 0.
Example 2:

Input: n = 7, edges = [[0,2],[0,5],[2,4],[1,6],[5,4]] Output: 14 Explanation: There are 14 pairs of nodes that are unreachable from each other: [[0,1],[0,3],[0,6],[1,2],[1,3],[1,4],[1,5],[2,3],[2,6],[3,4],[3,5],[3,6],[4,6],[5,6]]. Therefore, we return 14.
Constraints:
1 <= n <= 105
0 <= edges.length <= 2 * 105
edges[i].length == 2
0 <= ai, bi < n
ai != bi
- There are no repeated edges.
Solution
Python3
class DSU:
def __init__(self, n):
self.parent = list(range(n))
self.size = [1] * n
def find(self, x):
while x != self.parent[x]:
self.parent[x] = self.parent[self.parent[x]]
x = self.parent[x]
return x
def union(self, a, b):
a, b = self.find(a), self.find(b)
if a == b: return
# to mainttain self.size[a] >= self.size[b]
if self.size[a] < self.size[b]:
a, b = b, a
self.size[a] += self.size[b]
self.parent[b] = a
class Solution:
def countPairs(self, n: int, edges: List[List[int]]) -> int:
uf = DSU(n)
for a, b in edges:
uf.union(a, b)
parentCount = [0] * n
parent = [-1] * n
for i in range(n):
p = uf.find(i)
parentCount[p] += 1
parent[i] = p
res = 0
for i in range(n):
res += n - parentCount[parent[i]]
return res // 2