Description
An element x of an integer array arr of length m is dominant if more than half the elements of arr have a value of x.
You are given a 0-indexed integer array nums of length n with one dominant element.
You can split nums at an index i into two arrays nums[0, ..., i] and nums[i + 1, ..., n - 1], but the split is only valid if:
0 <= i < n - 1nums[0, ..., i], andnums[i + 1, ..., n - 1]have the same dominant element.
Here, nums[i, ..., j] denotes the subarray of nums starting at index i and ending at index j, both ends being inclusive. Particularly, if j < i then nums[i, ..., j] denotes an empty subarray.
Return the minimum index of a valid split. If no valid split exists, return -1.
Β
Example 1:
Input: nums = [1,2,2,2] Output: 2 Explanation: We can split the array at index 2 to obtain arrays [1,2,2] and [2]. In array [1,2,2], element 2 is dominant since it occurs twice in the array and 2 * 2 > 3. In array [2], element 2 is dominant since it occurs once in the array and 1 * 2 > 1. Both [1,2,2] and [2] have the same dominant element as nums, so this is a valid split. It can be shown that index 2 is the minimum index of a valid split.
Example 2:
Input: nums = [2,1,3,1,1,1,7,1,2,1] Output: 4 Explanation: We can split the array at index 4 to obtain arrays [2,1,3,1,1] and [1,7,1,2,1]. In array [2,1,3,1,1], element 1 is dominant since it occurs thrice in the array and 3 * 2 > 5. In array [1,7,1,2,1], element 1 is dominant since it occurs thrice in the array and 3 * 2 > 5. Both [2,1,3,1,1] and [1,7,1,2,1] have the same dominant element as nums, so this is a valid split. It can be shown that index 4 is the minimum index of a valid split.
Example 3:
Input: nums = [3,3,3,3,7,2,2] Output: -1 Explanation: It can be shown that there is no valid split.
Β
Constraints:
1 <= nums.length <= 1051 <= nums[i] <= 109numshas exactly one dominant element.
Solution
Python3
class Solution:
    def minimumIndex(self, nums: List[int]) -> int:
        N = len(nums)
        maj = -1
        mp = Counter()
        
        for x in nums:
            mp[x] += 1
            
            if mp[x] * 2 > N:
                maj = x
        
        left, right = 0, mp[maj]
        
        for i, x in enumerate(nums):
            if x == maj:
                left += 1
                right -= 1
            
            leftLength = i + 1
            rightLength = N - i - 1
            
            if left * 2 > leftLength and right * 2 > rightLength:
                return i
        
        return -1