Description
Given an m x n binary matrix mat, return the number of special positions in mat.
A position (i, j) is called special if mat[i][j] == 1 and all other elements in row i and column j are 0 (rows and columns are 0-indexed).
Β
Example 1:
Input: mat = [[1,0,0],[0,0,1],[1,0,0]] Output: 1 Explanation: (1, 2) is a special position because mat[1][2] == 1 and all other elements in row 1 and column 2 are 0.
Example 2:
Input: mat = [[1,0,0],[0,1,0],[0,0,1]] Output: 3 Explanation: (0, 0), (1, 1) and (2, 2) are special positions.
Β
Constraints:
m == mat.lengthn == mat[i].length1 <= m, n <= 100mat[i][j]is either0or1.
Solution
Python3
class Solution:
def numSpecial(self, mat: List[List[int]]) -> int:
rows, cols = len(mat), len(mat[0])
rowCount = [0] * rows
colCount = [0] * cols
res = 0
for i, row in enumerate(mat):
rowCount[i] = row.count(1)
for i, col in enumerate(zip(*mat)):
colCount[i] = col.count(1)
for i in range(rows):
for j in range(cols):
if mat[i][j] == rowCount[i] == colCount[j] == 1:
res += 1
return res