Description
We call a positive integer special if all of its digits are distinct.
Given a positive integer n, return the number of special integers that belong to the interval [1, n].
Β
Example 1:
Input: n = 20 Output: 19 Explanation: All the integers from 1 to 20, except 11, are special. Thus, there are 19 special integers.
Example 2:
Input: n = 5 Output: 5 Explanation: All the integers from 1 to 5 are special.
Example 3:
Input: n = 135 Output: 110 Explanation: There are 110 integers from 1 to 135 that are special. Some of the integers that are not special are: 22, 114, and 131.
Β
Constraints:
1 <= n <= 2 * 109
Solution
Python3
class Solution:
    def countSpecialNumbers(self, n: int) -> int:
        digits = []
 
        while n > 0:
            digits.append(n % 10)
            n //= 10
 
        digits.reverse()
 
        N = len(digits)
 
        @cache
        def dp(pos, tight, mask):
            if pos == N:
                return 1 if mask != 0 else 0
            
            limit = digits[pos] if tight else 9
            res = 0
            
            for i in range(0, limit + 1):
                if mask & (1 << i) > 0: continue
            
                nextTight = tight and i == digits[pos]
                nextMask = mask if i == 0 and mask == 0 else mask ^ (1 << i)
                
                res += dp(pos + 1, nextTight, nextMask)
                
            return res
    
        return dp(0, True, 0)