Description
There are n types of units indexed from 0 to n - 1. You are given a 2D integer array conversions of length n - 1, where conversions[i] = [sourceUniti, targetUniti, conversionFactori]. This indicates that a single unit of type sourceUniti is equivalent to conversionFactori units of type targetUniti.
Return an array baseUnitConversion of length n, where baseUnitConversion[i] is the number of units of type i equivalent to a single unit of type 0. Since the answer may be large, return each baseUnitConversion[i] modulo 109 + 7.
Β
Example 1:
Input: conversions = [[0,1,2],[1,2,3]]
Output: [1,2,6]
Explanation:
- Convert a single unit of type 0 into 2 units of type 1 using
conversions[0]. - Convert a single unit of type 0 into 6 units of type 2 using
conversions[0], thenconversions[1].

Example 2:
Input: conversions = [[0,1,2],[0,2,3],[1,3,4],[1,4,5],[2,5,2],[4,6,3],[5,7,4]]
Output: [1,2,3,8,10,6,30,24]
Explanation:
- Convert a single unit of type 0 into 2 units of type 1 using
conversions[0]. - Convert a single unit of type 0 into 3 units of type 2 using
conversions[1]. - Convert a single unit of type 0 into 8 units of type 3 using
conversions[0], thenconversions[2]. - Convert a single unit of type 0 into 10 units of type 4 using
conversions[0], thenconversions[3]. - Convert a single unit of type 0 into 6 units of type 5 using
conversions[1], thenconversions[4]. - Convert a single unit of type 0 into 30 units of type 6 using
conversions[0],conversions[3], thenconversions[5]. - Convert a single unit of type 0 into 24 units of type 7 using
conversions[1],conversions[4], thenconversions[6].
Β
Constraints:
2 <= n <= 105conversions.length == n - 10 <= sourceUniti, targetUniti < n1 <= conversionFactori <= 109- It is guaranteed that unit 0 can be converted into any other unit through a unique combination of conversions without using any conversions in the opposite direction.
Solution
Python3
class Solution:
def baseUnitConversions(self, conversions: List[List[int]]) -> List[int]:
MOD = 10 ** 9 + 7
N = len(conversions) + 1
graph = defaultdict(list)
for x, y, w in conversions:
graph[x].append((y, w % MOD))
res = [1] * N
def dfs(node, f):
nonlocal res
res[node] = f
for adj, f2 in graph[node]:
dfs(adj, (f * f2) % MOD)
dfs(0, 1)
return res