Description
You are given an integer array nums and an integer k.
Your task is to partition nums into k non-empty subarrays. For each subarray, compute the bitwise XOR of all its elements.
Return the minimum possible value of the maximum XOR among these k subarrays.
Β
Example 1:
Input: nums = [1,2,3], k = 2
Output: 1
Explanation:
The optimal partition is [1] and [2, 3].
- XOR of the first subarray is
1. - XOR of the second subarray is
2 XOR 3 = 1.
The maximum XOR among the subarrays is 1, which is the minimum possible.
Example 2:
Input: nums = [2,3,3,2], k = 3
Output: 2
Explanation:
The optimal partition is [2], [3, 3], and [2].
- XOR of the first subarray is
2. - XOR of the second subarray is
3 XOR 3 = 0. - XOR of the third subarray is
2.
The maximum XOR among the subarrays is 2, which is the minimum possible.
Example 3:
Input: nums = [1,1,2,3,1], k = 2
Output: 0
Explanation:
The optimal partition is [1, 1] and [2, 3, 1].
- XOR of the first subarray is
1 XOR 1 = 0. - XOR of the second subarray is
2 XOR 3 XOR 1 = 0.
The maximum XOR among the subarrays is 0, which is the minimum possible.
Β
Constraints:
1 <= nums.length <= 2501 <= nums[i] <= 1091 <= k <= n
Solution
Python3
class Solution:
def minXor(self, nums: List[int], k: int) -> int:
N = len(nums)
@cache
def go(i, k):
if i == N: return 0
if N - i < k or k <= 0:
return inf
xor = 0
res = inf
for j in range(i, N - k + 1):
xor ^= nums[j]
res = min(res, max(xor, go(j + 1, k - 1)))
return res
return go(0, k)