Description
You are given an integer n
.
Return the concatenation of the hexadecimal representation of n2
and the hexatrigesimal representation of n3
.
A hexadecimal number is defined as a base-16 numeral system that uses the digits 0 β 9
and the uppercase letters A - F
to represent values from 0 to 15.
A hexatrigesimal number is defined as a base-36 numeral system that uses the digits 0 β 9
and the uppercase letters A - Z
to represent values from 0 to 35.
Β
Example 1:
Input: n = 13
Output: "A91P1"
Explanation:
n2 = 13 * 13 = 169
. In hexadecimal, it converts to(10 * 16) + 9 = 169
, which corresponds to"A9"
.n3 = 13 * 13 * 13 = 2197
. In hexatrigesimal, it converts to(1 * 362) + (25 * 36) + 1 = 2197
, which corresponds to"1P1"
.- Concatenating both results gives
"A9" + "1P1" = "A91P1"
.
Example 2:
Input: n = 36
Output: "5101000"
Explanation:
n2 = 36 * 36 = 1296
. In hexadecimal, it converts to(5 * 162) + (1 * 16) + 0 = 1296
, which corresponds to"510"
.n3 = 36 * 36 * 36 = 46656
. In hexatrigesimal, it converts to(1 * 363) + (0 * 362) + (0 * 36) + 0 = 46656
, which corresponds to"1000"
.- Concatenating both results gives
"510" + "1000" = "5101000"
.
Β
Constraints:
1 <= n <= 1000
Solution
Python3
class Solution:
def concatHex36(self, n: int) -> str:
base16 = pow(n, 2)
base36 = pow(n, 3)
b2 = ''
while base36 > 0:
mod = base36 % 36
if mod <= 9:
b2 += str(mod)
else:
mod -= 10
b2 += chr(ord('A') + mod)
base36 //= 36
b1 = ''
while base16 > 0:
mod = base16 % 16
if mod <= 9:
b1 += str(mod)
else:
mod -= 10
b1 += chr(ord('A') + mod)
base16 //= 16
return b1[::-1] + b2[::-1]